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Abstract

In this work, we describe a simple approach to select the most important

molecular orbitals (MOs) to compute the optical rotation tensor through linear

response (LR) Kohn-Sham density functional theory (KS-DFT). Taking advan-

tage of the iterative nature of the algorithms commonly used to solve the LR

equations, we select the MOs with contributions to the guess perturbed density

that are larger than a certain threshold and solve the LR equations with the

selected MOs only. We propose two criteria for the selection, and two defini-

tions of the selection threshold. We then test the approach with two func-

tionals (B3LYP and CAM-B3LYP) and two basis sets (aug-cc-pVDZ and aug-

cc-pVTZ) on a set of 51 organic molecules with specific rotation spanning five

orders of magnitude, 100–104 deg (dm−1 (g/mL)−1). We show that this

approach indeed can provide very accurate values of specific rotation with esti-

mated speedup that ranges from 2 to 8× with the most conservative selection

criterion, and up to 20 to 30× with the intermediate criterion.
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1 | INTRODUCTION

The study of optically active molecules is of great interest
because of the fundamental role they play as the building
blocks of life (L-amino acids and D-sugars) and their
importance in the pharmaceutical industry.1 Facile
assignment of the absolute configuration (AC) of chiral
molecules is important because it is directly tied to their
bioactive properties. The ability to directly link a struc-
ture to the chiroptical property of interest, such as optical
rotation (OR), led electronic structure calculations to
become a standard for identifying the AC of chiral mole-
cules. Accurate calculations require the proper account of

electron correlation and large basis sets.1 To this end,
great progress has been made in recent years in applying
both density functional theory (DFT) and coupled cluster
(CC) methods to the calculation of [α]ω.

2-17 However, as
systems of interest become larger, the cost of electronic
structure calculations becomes prohibitive, and compro-
mises between cost and accuracy are needed.18

Despite the increasing complexity of systems of inter-
est, few attempts have been made to reduce the cost of
[α]ω calculations as a whole. Wiberg et al calculated [α]ω
with small basis sets (STO-3G and 3-21G) augmented
with diffuse functions from large correlation-consistent
basis sets.19 These mixed basis sets reproduce the values
obtained with the full basis sets at a fraction of the com-
putational cost. Another example is the OR prediction
(ORP) basis set, developed specifically to calculate [α]ω,
which is able to produce results of aug-cc-pVTZ quality
but is similar in size to aug-cc-pVDZ.20,21 Crawford et al
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extended the local correlation idea of Pulay and
Saebø22,23 to response properties24 and then later
implemented it for [α]ω calculations.25 This method uses
localized orbitals and neglects interactions between dis-
tant orbitals, thus reducing the cost of the correlation
part of the calculation.26,27 While this method is success-
ful for smaller systems, the authors show that for larger
systems the need for tighter thresholds outweighs the
benefits of neglecting parts of the wave function.25

In this work, we present a different approach to
reduce the cost of [α]ω calculations with Kohn-Sham
DFT (KS-DFT), based on the selection of the molecular
orbitals (MOs) that are likely to contribute the most to
this property and discarding the rest. We have recently
shown that a significant portion of the MOs do not con-
tribute significantly to [α]ω through a post-calculation
analysis of the OR tensor.28-30 Here, we try to determine
the meaningful MOs beforehand and to solve the linear
response equations only with a subset of relevant MOs
while preserving accuracy.

The paper is organized as follows: Section 2 outlines
the procedure for the orbital selection; Section 3 contains
the results of the calculations; and Section 4 presents a
discussion and concluding remarks.

2 | THEORY AND
COMPUTATIONAL DETAILS

In order to explain how the orbital selection process
works, it is useful to briefly review how the specific rota-
tion is typically computed. For molecules in isotropic
media, the specific rotation is related to trace of the elec-
tric dipole-magnetic dipole polarizability31 tensor G0

αβ:
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where ω is the frequency of incident light, and the tensor
G0

αβ is defined as follows:
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where μ is the electric dipole moment operator, m is the
magnetic dipole moment operator, the Greek letter
indexes represent Cartesian coordinates, φ0 and φn are
the ground and excited electronic state wave functions,
respectively, and ωn0 is the corresponding transition
energy. However, this series is slowly converging, and
evaluating electronic excited states is computationally
expensive. A significantly more efficient approach is
based on time-averaged variational linear response

theory,16,32,33 where the evaluation of the transition
moments in Equation (2) is replaced by the evaluation of
the perturbed electron density, Px

α, where x is the external
field perturbation. Using Hartree-Fock (HF) or KS-DFT
as approximations of the unperturbed density, and using
the variational nature of these methods, the perturbed
density can be obtained by solving the coupled perturbed
HF or KS equations (CPHF or CPKS):16,32,33
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where Mia,jb = (εa − εi)δijδab+Kaj,ib, Qia,jb = Kab,ij, Kia,

jb = haj| ibi+haj| fXC(r,r')| ibi, and 1 is the unit matrix.
Extra terms should appear in Equation (3) when
perturbation-dependent atomic orbitals (such as gauge
including atomic orbitals, or GIAOs16,34,35) are used, but
they are neglected here for simplicity. The indices i and
j denote occupied MOs, a and b virtual MOs, ε is the MO
energies, haj| ibi are two electron repulsion integrals
(2ERIs), and fXC(r,r') is the exchange correlation kernel of
the density functional. In Equation (3), the matrices Sβ,
ai = ha| Sβ| ii and their complex conjugate represent the
perturbation integrals in MO basis: Sβ = μβ or mβ. The G0

tensor is then obtained by tracing the perturbed density
with the conjugate dipole integrals:

G0
αβ =−ωTr Im Rα PS

β
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, ð4Þ

where Rα = mα or μα.
Equation (3) is generally not solved by direct inver-

sion of the matrix on the left-hand side because the
transformation of the 2ERIs to MO basis is computa-
tionally expensive (it scales as O(N5), where N is the
basis set size), and the matrix itself is rather large (ie,
the dimension is Nocc * Nvir, where Nocc is the number
of occupied MOs and Nvir is the number of virtual
MOs). Instead, efficient iterative algorithms based on
partial AO $ MO basis transformations are
employed.36,37 These algorithms avoid the full 2ERIs
transformation and the storage of the M and

In the context of this work, the key point is that any
iterative algorithm generates a guess for the solution vec-
tors; see eq. (64) in Pople et al.,36 to start the solution of
Equation (3). Thus, we can use the guess PS to define two
possible criteria for the MO selection, one based on the
square elements of the guess matrix:
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Q matrices. The scaling is thus reduced formally to
O(N4) but practically to O(N3) by using efficient integral
evaluation and contraction algorithms.
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tity with the rotatory strength in configuration space,
which we defined for the qualitative analysis of the MO
transition contributions to the OR tensor.28-30 The differ-
ence here is that the ~S values are computed with the
guess density rather than the converged density. In par-
ticular, we solve the CPKS equations for the magnetic
dipole perturbation, so that S = m and R = μ in Equa-
tions (5) and (6). Therefore, an occupied MO is selected if

G1
ia

++ ++or G2
ia

++ ++> ε 8a, ð7Þ

threshold ε is defined either as an absolute value, e.g., ε
= 10−n where n is a positive integer or relative to the larg-
est value of |Gia|, e.g., ε = 10−n Max{|Gia|}. In the follow-
ing section, we test these four possibilities for the MO
selection criterion with three values of n: n = 3, 4, 5.

Since the scope of this work is only to test the validity
of this idea, we remove the discarded MOs from the

calculation simply by setting to zero the corresponding
unperturbed MO coefficients in the CPKS calculation.
This ensures that these MOs do not contribute to the
evaluation of the OR tensor, but it does not effectively
change the cost of the calculation. Instead, we estimate
the potential cost savings by assuming a cubic scaling
with the size of the basis set, as mentioned above, and
reporting a speedup defined as follows:

Speed−Up=
Ntot

Nsel

# $3

, ð9Þ

number of selected MOs. All calculations were per-
formed with a development version of the GAUSSIAN
suite of programs.38 Geometries were optimized using
the CAM-B3LYP/aug-cc-pVDZ model chemistry.39,40

Calculations of specific rotation were performed at the
sodium D-line (ω = 589.3 nm) with the B3LYP41-43 and
CAM-B3LYP functionals and the aug-cc-pVDZ and aug-
cc-pVTZ basis sets in the length gauge formalism using
GIAOs.16,34,35

3 | RESULTS

To test the success of the selection procedure outlined in
Section 2, we performed calculations using a total of
51 molecules. This set is constructed from the 42 organic
molecules provided in the OR45 test set of Srebro et al,18

plus seven more organic molecules shown in Figure 1:
two conformers of 2-carene (43 and 44), two conformers
of 3-methylcyclopentanone (45 and 46), cycloserine (47),
fucose (48), limonene (49), nicotine (50), and oxaceprol
(51). The absolute values of the specific rotation range
across five orders of magnitude, 100–104 deg (dm−1

FIGURE 1 Structures of molecules 43-51
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and one based on the dot product with the conjugate
dipole integrals:

where we have used the ~S symbol to connect this quan-

and a virtual MO is selected if

G1
ia

!! !!or G2
ia

!! !!> ε 8i, ð8Þ

depending on the choice of selection criterion. The

where Ntot is the total number of MOs and Nsel is the



(g/mL)−1), reported in Tables S1 to S8 in the Supporting
Information (SI), providing a stringent test for the
procedure.

We define a short-hand notation to distinguish the
choice of selection criterion: A/R represents absolute or
relative thresholds; G/S represents G1 or G2

(in Equations (5) and (6)), respectively, followed by the
threshold order of magnitude (n). For instance, AG5 indi-
cates the G1 criterion with the absolute threshold ε =
10−5. The results are presented in terms of relative errors
(%), with histograms that collect the error distribution for
the test set and tables that include the mean signed error
(MSE), mean unsigned error (MUE), maximum error
(Max), the MSE standard deviation (σMSE), the average
relative number of selected MOs ( ~Nsel), its standard devi-
ation (σ ~Nsel

), and the estimated speedup based on Equa-
tion (9). All values of [α]D with all selection criteria are
reported in Tables S1 to S8 of the SI, while Tables S9 to
S16 report the number of occupied and virtual MOs
employed in each calculation.

The relative error distribution for CAM-B3LYP/aug-
cc-pVDZ and the AGn criterion is reported in Figure 2.
The plots for the other three selection criteria are simi-
lar and are reported in Figures S1 to S3. The collective
statistical analysis for this model chemistry and all
selection criteria is reported in Table 1. It is immedi-
ately apparent from the figure that the error distribu-
tion for AG5 is sharply centered around 0, and it
spreads out as n decreases. Similar trends are obtained
with the other criteria. All calculations with thresholds
n > 3 reproduce [α]D very well, as indicated by both
the small MUE and σMSE in Table 1. The AG5 results
are very accurate, with a MUE of only 0.8%, a σMSE of
1.4%, and a Max of only 5.5%. This selection criterion
discards about 40% of the MOs, with an estimated
speedup of 4×, which is already significant. Using n =
4 leads to a slight drop in accuracy, but MSE and MUE
are still small, −1.1% and 3.9%, respectively. The values
of σMSE and Max are larger, 8.5% and 49%, respectively.
However, this is due to molecules with small absolute
values of [α]D, where small absolute errors may result
in seemingly large relative errors. For instance, the Max
= 49% comes from molecule 1, which has [α]D =
−19 deg (dm−1 (g/mL)−1), and an absolute error of −9
deg (dm−1 (g/mL)−1); note that both the [α]D value and
the error are considerably below the average expected
error for this choice of model chemistry, ie, 25–30 deg
(dm−1 (g/mL)−1).18 The other two molecules with seem-
ingly large relative error in Figure 2 for AG4 are 19,
which has [α]D = 10 deg (dm−1 (g/mL)−1) and an abso-
lute error of 2.1 deg (dm−1 (g/mL)−1), and 6, with [α]D
= 15 deg (dm−1 (g/mL)−1) and an absolute error of 2.4
deg (dm−1 (g/mL)−1). Therefore, the AG4 criterion does

in fact provide even better results than what appears in
Table 1 if the statistical analysis had been performed
subdividing the test set in compounds with large and
small [α]D, and the absolute rather than the relative
error had been used for the latter set. On average, this
selection criterion eliminates more than half of the

FIGURE 2 Histogram of the signed relative errors for each of
the 51 molecules using the AGn selection criterion and the CAM-
B3LYP/aug-cc-pVDZ method
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MOs (55%), with a considerable estimated speedup of
11×. On the other hand, the AG3 criterion is too loose,
as shown both in Figure 2 and in Table 1, and the large
speedup comes at the price of poor accuracy.

The error distributions for the RGn criterion at
CAM-B3LYP/aug-cc-pVDZ level are shown in
Figure S1 of the SI, and the statistical data are
reported in Table 1. This criterion provides essentially

the same trends as the corresponding AGn choice.
However, the error averages and spread tend to be
smaller than those for AGn for the same level of n.
This is because a smaller number of MOs (about 10%
less) are discarded with RGn than with AGn for every
n. The better accuracy comes with smaller speedup by
a factor of approximately 2. The results for the ASn
criterion are reported in Figure S2 of the SI and

TABLE 1 Relative (%) error: MSE, MUE, Max, and σMSE, average fraction (%) of selected MOs ( ~Nsel) and the corresponding standard
deviation (σ ~Nsel

), and estimate of the average speedup (S.U., see Equation (9)) for calculations with the aug-cc-pVDZ basis set

CAM-B3LYP B3LYP

n 5 4 3 5 4 3

AGn

MSE −0.1 −1.1 −1.7 −0.2 −0.3 −7.8

MUE 0.8 3.9 23 0.7 3.5 21

Max 5.5 49 211 7.3 33 228

σMSE 1.4 8.5 51 1.5 7.7 47

~Nsel 62 45 24 63 46 25

σ ~Nsel
5 5 4 5 5 3

S.U. 4.1 11 70 4 11 60

RGn

MSE 0 0.6 −0.7 0.1 0.1 −5.3

MUE 0.2 1.4 6.1 0.7 2.4 17

Max 1.7 13 28 9.4 21 161

σMSE 0.4 2.6 10 1.9 4.7 37

~Nsel 72 57 37 63 47 27

σ ~Nsel
10 12 11 15 14 12

S.U. 2.6 5.5 20 4 10 50

ASn

MSE 0 −0.6 −4.4 0 −0.1 −10

MUE 0.2 1.9 16.3 0.2 2 18

Max 1.2 9.5 170 1.5 18 200

σMSE 0.3 3.2 36 0.4 4.4 43

~Nsel 73 54 28 72 56 29

σ ~Nsel
10 5 5 9 5 5

S.U. 2.6 6 43 2.6 6 42

RSn

MSE 0.1 0.1 0.2 0 0.1 0.3

MUE 0.2 0.2 1.9 0.1 0.2 2

Max 1.7 1.5 9.3 1.1 0.9 11

σMSE 0.4 0.4 2.9 0.3 0.3 3.3

~Nsel 79 71 55 75 67 49

σ ~Nsel
11 12 12 11 13 14

S.U. 2 2.8 6.2 2.4 3.3 8.3

Abbreviations: MO, molecular orbital; MSE, mean signed error; MUE, mean unsigned error.
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Table 1. Calculations performed with this criterion pro-
vide results that are very close to those with RGn in
terms of accuracy, number of discarded MOs, and
corresponding speedup. Finally, the RSn data, reported
in Figure S3 of the SI and Table 1, are virtually identi-
cal to those obtained with the RG(n + 1) criterion.
Also for these criteria, the largest relative errors are
due to molecules with small [α]D; for instance, the
Max error for RG4 (13%) is due to molecule 18, with
[α]D = 2.3 deg (dm−1 (g/mL)−1) and an error of 0.29
deg (dm−1 (g/mL)−1).

The error distributions with the B3LYP/aug-cc-
pVDZ model chemistry and the AGn criterion are
shown in Figure 3, while similar plots for the other
criteria are shown in Figures S4–S6 of the SI. The sta-
tistical analysis for all criteria is also reported in
Table 1. The qualitative trends in the error distribution
are very similar to those for the CAM-B3LYP func-
tional. The statistical data also mirror that of CAM-
B3LYP, both in terms of accuracy and computational
cost. The only notable difference is that the errors with
the RGn criterion are larger than those for CAM-
B3LYP because a larger number of MOs are discarded.
A similar behavior, albeit to a smaller extent, is
obtained with the RSn criterion. This difference is due
to the fact that the magnitude of the larger G1

ia (and
G2
ia) values is larger with CAM-B3LYP than with B3LYP,

which results in a looser selection threshold for the latter
method. Six molecules in the AG4 set have errors greater
than 10%: 1, 6, 9, 18, 19, and 34, with errors of 33%, 28%,
15%, 19%, 16%, and 14%, respectively. The [α]D for these
molecules are −17, 12, 10, 1.9, 9, and −9 deg (dm−1

(g/mL)−1), respectively, while the errors are 5.6, 3.24,
1.46, 0.35, 1.34, and 1.25 deg (dm−1 (g/mL)−1), respec-
tively. With RG4, molecules 9, 18, and 34 have a relative
error greater than 10%: −15%, −15%, and 21%,
corresponding to absolute values of 1.46, 0.27, and 1.86
deg (dm−1 (g/mL)−1), respectively, for [α]D values of −10,
1.9, and −9 deg (dm−1 (g/mL)−1), respectively. The
B3LYP AS4 set contains only three molecules with errors
greater than 10% (1, 9, and 18), where the errors are 17%,
18%, and 11%, respectively, and the corresponding [α]D
values are also small: −17, −10, and 1.90 deg (dm−1

(g/mL)−1), respectively. No errors greater than 10% are
found for the RS4 criterion. These values of [α]D and
corresponding errors are again below the expected accu-
racy of this level of theory, estimated to be in the 20 to 25
deg(dm−1 (g/mL)−1) range.18,44

The error distribution for CAM-B3LYP and B3LYP
with the aug-cc-pVTZ basis set and the AGn criterion are
shown in Figures 4 and 5, while the same plots with the
other selection criteria are reported in Figures S7–S12 of
the SI. The statistical data of the error and computational

cost are shown in Table 2. The qualitative trends of error
distribution with this basis set are similar to those with
aug-cc-pVDZ, except that the distribution is now slightly
more spread out. The statistical data in the table for
CAM-B3LYP show that, for each selection criterion, there
seems to be a correspondence with the n-1 choice of the
aug-ccpVDZ basis set in terms of accuracy, amount of

FIGURE 3 Histogram of the signed relative errors for each of
the 51 molecules using the AGn selection criterion and the
B3LYP/aug-cc-pVDZ method
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selected MOs, and speedup. This is related to the fact that
with a larger basis set there are more virtual MOs avail-
able, corresponding to a larger number of PSβ,ai elements.
More of these elements are small compared to the aug-
cc-pVDZ case, but they still contribute significantly to the
final value of the specific rotation. Nonetheless, a tight

choice of n (n = 5) for aug-cc-pVTZ provides smaller
spread (both in terms of σMSE and Max) and a larger
speedup than with n = 4 for aug-cc-pVDZ, indicating that
a tighter threshold can be used for the larger basis set
without sacrificing accuracy and computational gains. In

FIGURE 5 Histogram of the signed relative errors for each of
the 51 molecules using the AGn selection criterion and the
B3LYP/aug-cc-pVTZ method

FIGURE 4 Histogram of the signed relative errors for each of
the 51 molecules using the AGn selection criterion and the CAM-
B3LYP/aug-cc-pVTZ method
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fact, only the AG5 set has one molecule with error
greater than 10%, molecule 6, with an [α]D of 1.3 deg
(dm−1 (g/mL)−1) and an error of 0.4 deg
(dm−1 (g/mL)−1).

The same trends across selection criteria are observed
with both basis sets, and n = 4 or even 3 are reasonable
choices for the RSn criterion and aug-cc-pVTZ. Similar
considerations apply to B3LYP/aug-cc-pVTZ, where the

tight n = 5 choice provides both accurate results and
large estimated speedup for all selection criteria, except
for RSn, where smaller n values are also acceptable. For
B3LYP, there are a few cases of errors above 10%, all
related to small [α]D values: three molecules with AG5
and one with RG5. The three compounds for AG5 are 6,
18, and 34, where the errors are −12%, 19%, and 12%,
respectively, from [α]D = −4, 1.5, and −9 deg (dm−1

TABLE 2 Relative (%) error: MSE, MUE, Max, and σMSE, average fraction (%) of selected MOs ( ~Nsel) and the corresponding standard
deviation (σ ~Nsel

), and estimate of the average speedup (S.U., see Equation (9)) for calculations with the aug-cc-pVTZ basis set

CAM-B3LYP B3LYP

n 5 4 3 5 4 3

AGn

MSE 0.6 4.6 −72 0.1 −2.2 −5.4

MUE 1.9 12 95 1.8 5 22

Max 31 230 3,698 19 60 199

σMSE 5.1 38 519 4.1 11 46

~Nsel 39 23 12 39 23 13

σ ~Nsel
3 3 2 3 3 2

S.U. 17 85 600 17 79 500

RGn

MSE 0.3 1 2.7 0 −0.9 −11

MUE 0.8 3.7 16 1.1 3.7 23

Max 7.6 74 258 13 85 354

σMSE 1.6 12 44 2.6 13 57

~Nsel 51 34 19 40 26 14

σ ~Nsel
11 9 6 11 10 6

S.U. 7.7 26 140 15 55 380

ASn

MSE 0.2 1.5 −2.2 −0.1 −2.1 −6.5

MUE 0.6 6.7 33 0.6 4.6 18

Max 3.8 121 633 4.3 44 213

σMSE 1.1 20 99 1.1 11 41

~Nsel 52 30 14 52 30 14

σ ~Nsel
8 4 2 8 4 2

S.U. 7.2 37 370 7.1 37 350

RSn

MSE 0.3 0.2 0.9 0 0 -0.7

MUE 0.5 0.5 2.7 0.4 0.7 3.3

Max 6.9 3.2 44 3.8 5.2 32

σMSE 1.2 0.9 6.9 0.8 1.3 6.5

~Nsel 73 53 33 68 47 28

σ ~Nsel
13 12 9 16 13 9

S.U. 2.6 6.8 29 3.2 9.5 46

Abbreviations: MO, molecular orbital; MSE, mean signed error; MUE, mean unsigned error.
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(g/mL)−1), respectively; for RG5, molecule 34 has a 13%
relative error corresponding to an absolute error of 1.26
deg (dm−1 (g/mL)−1).

4 | DISCUSSION AND
CONCLUSIONS

In this work, we show that accurate calculations of [α]ω
can be performed with a subset of MOs in the solution of
the CPKS equations, which determine the perturbed den-
sity used to evaluate the G0 tensor. Selecting only the
MOs for the excited configurations that contribute the
most to the final value of the property can significantly
reduce the computational cost of these calculations with
minimal loss of accuracy. We propose two selection
criteria for the relevant MOs, based on the guess density
used in the iterative solution of the CPKS equations. With
these criteria, we also propose two definitions of the
selection threshold, an absolute value and a value relative
to the largest absolute element in the guess, and various
numerical values for the threshold. We compiled a test
set of 51 chiral organic molecules with [α]D values span-
ning five orders of magnitude, and we tested the various
combinations of criteria and thresholds with two func-
tionals, CAM-B3LYP and B3LYP, and two basis sets, aug-
cc-pVDZ and aug-cc-pVTZ.

We find that all of the selection criteria work fairly
well, as long as the threshold value n is large enough.
The latter is the most important factor, as it correlates
with the number of discarded MOs. The selected MOs
typically are high energy occupied and low-energy vir-
tual orbitals. This is because the working equations to
solve the system in Equation (3) contain an energy
denominator based on the energy difference between
occupied and virtual MOs for a particular configura-
tion.16,32,33 Therefore, excited determinants built from
MOs close to the Fermi energy provide larger contribu-
tions to the perturbed density. We find that n = 5 is a
very effective choice of threshold in combination with
the aug-cc-pVDZ basis set. These calculations are highly
accurate, with low average errors (the largest MUE
across the set is 0.7% and the largest MSE is −0.2%),
small σMSE (the largest is 4.1%), very small errors over-
all (the maximum error across all 8 sets is 9.4%), and
good speedup ranging from 2 to 4×. The n = 4 threshold
provides much larger speedup, up to 11× faster than
the full basis set. These calculations come with a some-
what worse accuracy than their n = 5 counterparts, as
the largest MUE and MSE increase to 3.9% and −1.1%,
respectively, and σMSE increases up to 8.5%. This thresh-
old choice may be ideal for screening a large number of
compounds, as the calculations can be performed

quickly at a fairly high accuracy. The few large relative
Max errors for the n = 4 calculations (see Table 1) are
all due to small absolute values of [α]D. Furthermore,
the corresponding absolute errors are at most 4 times
smaller than the expected average error for CAM-
B3LYP/aug-cc-pVDZ, and 3 times smaller than what is
expected for B3LYP/aug-cc-pVDZ.18,44 On the other
hand, the n = 3 threshold is too loose, and it leads to
low accuracy. With the larger basis set, aug-cc-pVTZ,
the best threshold is n = 5, because the size of the basis
set leads to a larger number of small density elements
whose sum becomes important. Nonetheless, the accu-
racy of the n = 5 calculations with this basis set is bet-
ter than the n = 4 equivalents with aug-cc-pVDZ, and
the estimated speedup is comparable (7-8×). At a given
n, our results indicate that a relative threshold is more
accurate than an absolute one, and the G2 criterion is
more accurate than G1. Thus, we recommend either the
RG5 or AS5 criteria as the best compromise between
computational cost and accuracy (the RS5 criterion
would be more accurate but also more computationally
intensive). We note that the analysis performed in this
work is based on canonical MOs, which may or may
not represent the most compact representation of the
OR tensor.28,45 It would be interesting to repeat this
analysis using a localized MO basis, but the CPKS code
in GAUSSIAN is only available in the canonical MO
basis, thus beyond the scope of this work,

This proof-of-concept work shows that the selection
of MOs prior to the solution of the CPKS equations, with
careful choice of the selection criterion, can lead to large
estimated speedup in calculations while accurately rep-
roducing [α]ω. These promising results now require an
efficient implementation of the procedure for actual
timing information. More importantly, we plan to extend
this approach to CC methods, whose steeper scaling with
system size compared to DFT may make the selection
criteria even more beneficial for the fast evaluation of
this molecular property.
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